Tsunami Risk and Information Shocks Evidence from the Oregon Housing Market

Amila Hadziomerspahic Advisor: Steven Dundas Masters Final Oral Examination : February 19, 2020

The Really Big One

7-15%

Odds of a magnitude 8.7-9.2 Cascadia earthquake in the next 50 years

~37%

Odds of a magnitude 8.0-8.6 Cascadia earthquake in the next 50 years

>10,000

Potential fatalities due to a combined 9.0 Cascadia earthquake and tsunami

The Really Big One

\$30 billion

Estimated economic losses – almost 1/5th of Oregon's gross state product

22,000

Number of permanent residents living in the tsunami inundation zone (2012)

1-3 years

Estimated time to restore drinking water

Risk salience and resilience

- Improving resilience at the state, county, individual level
- Individuals' preparedness actions \rightarrow depend on risk beliefs

Risk salience and resilience

- Improving resilience at the state, county, individual level
- Individuals' preparedness actions \rightarrow depend on risk beliefs
- If the risk is not salient, individuals will likely underprepare themselves

Risk salience and resilience

- Improving resilience at the state, county, individual level
- Individuals' preparedness actions \rightarrow depend on risk beliefs
- If the risk is not salient, individuals will likely underprepare themselves
- Gap between subjective risk perceptions and objective risk?

Research question

- Did two recent information shocks the March 2011 Tohoku earthquake and tsunami and the July 2015 New Yorker article "The Really Big One" - change Oregonians' risk perceptions about the Cascadia earthquake and tsunami?
- Does the tsunami risk discount in property values increase following an exogenous information shock about tsunami risks?

News Books & Culture Fiction & Poetry Humor & Cartoons Magazine Crossword Video Podcasts Archive

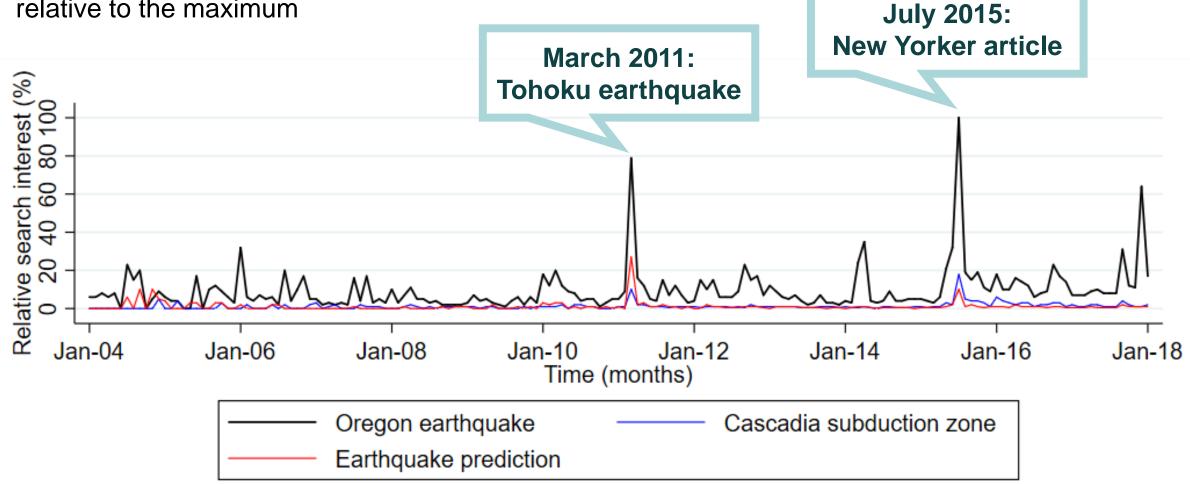
ANNALS OF SEISMOLOGY JULY 20, 2015 ISSUE

THE REALLY BIG ONE

An earthquake will destroy a sizable portion of the coastal Northwest. The question is when.

By Kathryn Schulz July 13, 2015

Pacific Northwest


Oregon coast will be 'toast' when Big One hits; politicians will make devastation even worse: The New Yorker

OREGONLIVE The Oregonian

Updated Jul 03, 2019; Posted Jul 03, 2019

Information shocks

Google searches in Oregon as measured by search interest relative to the maximum

Outline

1

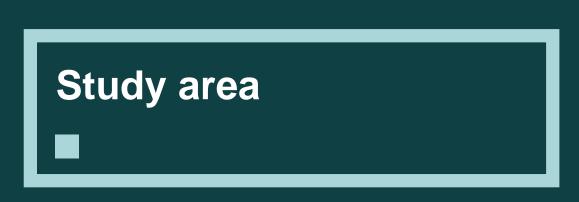
3

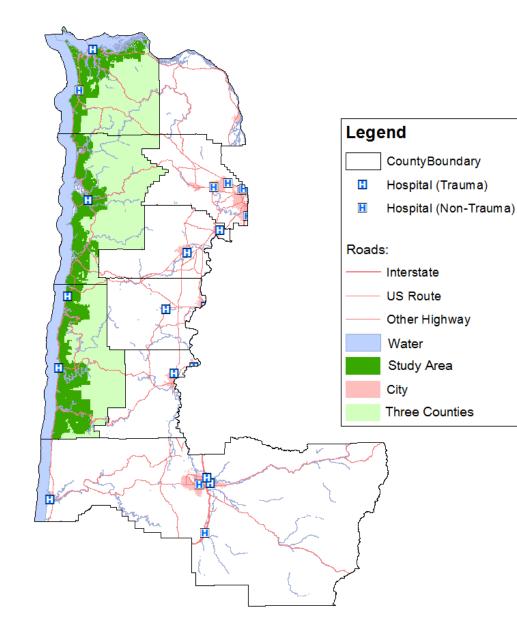
6

Motivation

- 2 Hazards and housing markets: previous research
 - Study area and data
- 4 Methodology
- 5 Results
 - Discussion & conclusion

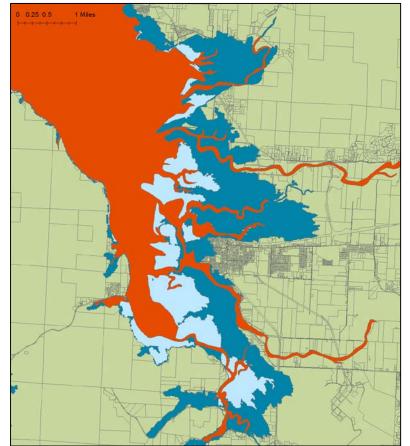
- Rosen's (1974) hedonic model of market equilibrium and MWTP of amenities
- House prices can capitalize property risk factors:
 - Natural hazards: Atreya et al. (2013), Bin and Landry (2013), Brookshire et al. (1985)
 - Manmade hazards: Hansen et al. (2006), McCluskey and Rausser (2001)


- Rosen's (1974) hedonic model of market equilibrium and MWTP of amenities
- House prices can capitalize property risk factors:
 - Natural hazards: Atreya et al. (2013), Bin and Landry (2013), Brookshire et al. (1985)
 - Manmade hazards: Hansen et al. (2006), McCluskey and Rausser (2001)
- Using Difference-in-Differences hedonic models to show that disaster events increase house price differentials across hazard zones:
 - Floods and hurricanes: Atreya et al. (2013, 2015), Bin and Landry (2013), Hallstrom and Smith (2005). Earthquakes: Naoi et al. (2009).


- Rosen's (1974) hedonic model of market equilibrium and MWTP of amenities
- House prices can capitalize property risk factors:
 - Natural hazards: Atreya et al. (2013), Bin and Landry (2013), Brookshire et al. (1985)
 - Manmade hazards: Hansen et al. (2006), McCluskey and Rausser (2001)
- Using Difference-in-Differences hedonic models to show that natural disasters increase house price differentials across hazard zones:
 - Floods and hurricanes: Atreya et al. (2013, 2015), Bin and Landry (2013), Hallstrom and Smith (2005). Earthquakes: Naoi et al. (2009).
- Using "distant" or "pure" information shocks:
 - Atreya and Ferreira (2015), Gu et al. (2018), Hallstrom and Smith (2005), Nakanishi (2017)

- Rosen's (1974) hedonic model of market equilibrium and MWTP of amenities
- House prices can capitalize property risk factors:
 - Natural hazards: Atreya et al. (2013), Bin and Landry (2013), Brookshire et al. (1985)
 - Manmade hazards: Hansen et al. (2006), McCluskey and Rausser (2001)
- Using Difference-in-Differences hedonic models to show that natural disasters increase house price differentials across hazard zones:
 - Floods and hurricanes: Atreya et al. (2013, 2015), Bin and Landry (2013), Hallstrom and Smith (2005). Earthquakes: Naoi et al. (2009).
- Using "distant" or "pure" information shocks:
 - Atreya and Ferreira (2015), Gu et al. (2018), Hallstrom and Smith (2005), Nakanishi (2017)
- Exploring the combined earthquake/tsunami risk or earthquake risk alone:
 - Beron et al. (1997), Brookshire et al. (1985), Gu et al. (2018), Hidano et al. (2015), Nakanishi (2017), Naoi et al. (2009)

- Three northern coastal counties: Clatsop, Tillamook, and Lincoln
- Spatial range: within 2 miles of the original tsunami inundation line



Tsunami hazard lines

- Treatment:
 - 1995 SB 379 line
 - 2013 TIM series
- Time range: 2009 2017


Red: 1995 SB 379 line

Blue: SM and XXL 2013 scenarios

Tillamook Bay, OR

2013 TIM series: SM, M, L, XL, XXL scenarios

Variables	Labels	Mean	SD	Min	Max
Structural					
bedrooms	Number of bedrooms	2.8	.93	1	8
baths	Number of bathrooms	2	.8	.5	6
sqfootage	Indoor square footage	1,684	733	208	16,500
g18_eligible	1 if Goal 18 eligible, else 0	.04	.2	0	1
armored	1 if has shoreline armoring, else 0	.013	.11	0	1
Location					
sfha	1 if in Special Flood Hazard Area (SFHA), else 0	.17	.38	0	1
elevation	Elevation (ft)	79	70	2.8	746
beachaccess	Distance to nearest beach access point (ft)	3,108	5,327	0	50,974
ocean	Distance to ocean shoreline (ft)	10,991	16,995	0	126,398
oceanfront	1 if on oceanfront, else 0	.052	.22	0	1
stateland	Distance to nearest state park or public land (ft)	5,277	6,374	0	39,241
fedland	Distance to nearest national park or public land (ft)	4,423	4,094	0	29,406

Table 1. Variable Definitions and Descriptive Statistics, Full Sample, 2009-2017

- Spatial hedonic framework:
 - Difference-in-differences model

- Spatial hedonic framework:
 - Difference-in-differences model
 - Spatial and temporal fixed effects

- Spatial hedonic framework:
 - Difference-in-differences model
 - Spatial and temporal fixed effects
 - Three primary models: Model I, II, III

Model I: 2011 Tohoku earthquake only

 $ln(price_{ict}) = \mathbf{X}'_{ict}\beta_1 + \beta_2 sb379_i + \beta_3 tohoku_t + \delta_1 sb379_i * tohoku_t + quarter_t$

 $+ blckgrp_c * year_t + \epsilon_{ict}$

Model I: 2011 Tohoku earthquake only

Average Treatment Effect on the Treated

 $ln(price_{ict}) = \mathbf{X}'_{ict}\beta_1 + \beta_2 sb379_i + \beta_3 tohoku_t + \delta_1 sb379_i * tohoku_t + quarter_t$

 $+ blckgrp_c * year_t + \epsilon_{ict}$

Model II: 2015 New Yorker article only

ATET $In(price_{ict}) = X'_{ict}\beta_1 + \beta_2 x x l 2013_i + \beta_3 article_t + \delta_1 x x l 2013_i * article_t$

 $+ quarter_t + blckgrp_c * year_t + \epsilon_{ict}$

Model III: Combined events

ATET

 $ln(price_{ict}) = X'_{ict}\beta_1 + \beta_2 sb379_i + \beta_3 tohoku_t + \beta_4 article_t + \delta_1 sb379_i * tohoku_t$

 $+ \delta_2 sb379_i * article_t + quarter_t + blckgrp_c * year_t + \epsilon_{ict}$

ATET

	(Outside SB 379		B 379	Standardized diff. in means	
		inundation zone		inundation zone			
Variables	Labels	Mean	SD	Mean	SD		
Structural							
bedrooms	Number of bedrooms	2.9	.92	2.7	.94	0.23	
baths	Number of bathrooms	2.1	.8	1.9	.77	0.20	
sqfootage	Indoor square footage	1,744	745	1,514	670	0.32	
g18_eligible	1 if Goal 18 eligible, else 0	.019	.14	.1	.3	-0.35	
armored	1 if has shoreline armoring, else 0	.0024	.049	.043	.2	-0.27	
Location							
sfha	1 if in Special Flood Hazard Area	.067	.25	.46	.5	-0.99	
	(SFHA), else 0						
elevation	Elevation (ft)	99	71	22	10	1.52	
beachaccess	Dist. to nearest beach access point (ft)	3,711	5,769	1,403	3,248	0.49	
ocean	Distance to ocean shoreline (ft)	13,427	18,337	4,099	9,511	0.64	
oceanfront	1 if on oceanfront, else 0	.027	.16	.12	.33	-0.37	
stateland	Distance to nearest state park or public	6,235	6,720	2,566	4,225	0.65	
	land (ft)						
fedland	Distance to nearest national park or public	4,598	4,177	3,928	3,804	0.17	
	land (ft)						
Observations		12,608		4,456			

Table 2. Variable Definitions and Descriptive Statistics, by SB 379, 2009-2017

			Outside SB 379 inundation zone		3 379	Standardized
					on zone	diff. in means
Variables	Labels	Mean	SD	Mean	SD	
Structural						
bedrooms	Number of bedrooms	2.9	.92	2.7	.94	0.23
baths	Number of bathrooms	2.1	.92	1.9	.77	0.20
sqfootage	Indoor square footage	1,744	.0 745	1,514	670	0.32
g18_eligible	1 if Goal 18 eligible, else 0	.019	.14	.1	.3	-0.35
armored	1 if has shoreline armoring, else 0	.0024	.049	.043	.2	-0.27
Location			10 17		-	
sfha	1 if in Special Flood Hazard Area	.067	.25	.46	.5	-0.99
	(SFHA), else 0					
elevation	Elevation (ft)	99	71	22	10	1.52
beachaccess	Dist. to nearest beach access point (ft)	3,711	5,769	1,403	3,248	0.49
ocean	Distance to ocean shoreline (ft)	13,427	18,337	4,099	9,511	0.64
oceanfront	1 if on oceanfront, else 0	.027	.16	.12	.33	-0.37
stateland	Distance to nearest state park or public	6,235	6,720	2,566	4,225	0.65
	land (ft)					
fedland	Distance to nearest national park or public	4,598	4,177	3,928	3,804	0.17
	land (ft)					
Observations		12,608		4,456		

Table 2. Variable Definitions and Descriptive Statistics, by SB 379, 2009-2017

- Spatial hedonic framework:
 - Difference-in-differences model
 - Spatial and temporal fixed effects
 - Three primary models: Model I, II, III
- Matching to improve covariate balance:
 - Nearest neighbor propensity score matching (PSM)
 - Nearest neighbor Mahalanobis matching (NNM)

- Spatial hedonic framework:
 - Difference-in-differences model
 - Spatial and temporal fixed effects
 - Three primary models: Model I, II, III
- Matching to improve covariate balance:
 - Nearest neighbor propensity score matching (PSM)
 - Nearest neighbor Mahalanobis matching (NNM)
 - Variables influencing treatment assignment: elevation, distance to the ocean

Matching results

- Propensity score matching did not appreciably improve covariate balance
 - Balance for *elevation* and *lnocean* improved in most but not all models
 - Unable to exactly match on event timing

Matching results

- Propensity score matching did not appreciably improve covariate balance
 - Balance for *elevation* and *lnocean* improved in most but not all models
 - Unable to exactly match on event timing
- Nearest neighbor Mahalanobis matching performed better than propensity score matching
 - Balance improved for *elevation* and *lnocean* but not below |0.10| rule of thumb
 - Exact matches on county and event timing

Matching results

- Propensity score matching did not appreciably improve covariate balance
 - Balance for *elevation* and *lnocean* improved in most but not all models
 - Unable to exactly match on event timing
- Nearest neighbor Mahalanobis matching performed better than propensity score matching
 - Balance improved for *elevation* and *lnocean* but not below |0.10| rule of thumb
 - Exact matches on county and event timing
- Run models using both methods' matched data and compare to full data results

Variables	Labels	Model I	Model II	Model III
Diff-in-Diff				
sb379xtohoku	SB 379 tsunami in. zone (=1) x sold after 2011 earthquake and before 2015 article	-0.0847**	<	-0.0792**
		(0.0389)		(0.0347)
xx12013xarticle	2013 XXL tsunami in. zone (=1) x sold after 2015 article		-0.00881 (0.0239)	
sb379xarticle	SB 379 tsunami in. zone (=1) x sold after 2015 article			-0.0638* (0.0347)
Observations		7,568	9,496	17,064
R-squared		0.426	0.508	0.463

Variables	Labels	Model I	Model II	Model III
Event/Treatme	nt			
tohoku	1 if sold after 2011 earthquake and before 2015 article, else 0	0.0853**		0.0838**
		(0.0399)		(0.0387)
article	1 if sold after 2015 article, else 0		0.0434**	0.119***
			(0.0211)	(0.0437)
sb379	1 if in tsunami in. zone given by 1995 SB 379, else 0	0.0516		0.0777**
		(0.0329)		(0.0313)
xx12013	1 if in tsunami in. zone given by 2013 XXL, else 0		0.0276	
			(0.0228)	
Observations		7,568	9,496	17,064
R-squared		0.426	0.508	0.463

Variables	Labels	Model I	Model II	Model III
Event/Treatmer	<i>ıt</i>			
tohoku	1 if sold after 2011 earthquake and before 2015 article, else 0	0.0853** (0.0399)		0.0838** (0.0387)
article	1 if sold after 2015 article, else 0	```'	0.0434**	0.119***
sb379	1 if in tsunami in. zone given by 1995 SB 379, else 0	0.0516 (0.0329)	(0.0211)	(0.0437) 0.0777** (0.0313)
xxl2013	1 if in tsunami in. zone given by 2013 XXL, else 0		0.0276	
			(0.0228)	
Observations		7,568	9,496	17,064
R-squared		0.426	0.508	0.463

		Nearest neighbor Mahalanobis			Nearest neighbor propensity score		
Variables	Labels	Model I	Model II	Model III	Model I	Model II	Model III
Diff-in-Diff							
sb379xtohoku	SB 379 (=1) x sold after 2011 EQ and before 2015 article	-0.106		-0.0910	-0.127		-0.0519
		(0.0726)		(0.0654)	(0.0794)		(0.0691)
xxl2013xarticle	2013 XXL tsunami in. zone (=1) x sold after 2015 article		-0.0712			-0.0790	
			(0.0504)			(0.0485)	
sb379xarticle	SB 379 tsunami in. zone (=1) x sold after 2015 article			-0.0869 (0.0649)			-0.0592 (0.0674)
Observations		2,334	5,018	5,247	2,317	5,026	5,252
R-squared		0.513	0.532	0.531	0.494	0.532	0.518

Table 6. Difference-in-differences selected results, matched data

		Nearest neighbor Mahalanobis			Nearest neighbor propensity score		
Variables	Labels	Model I	Model II	Model III	Model I	Model II	Model III
Event/Treatmer	<i>it</i>						
tohoku	1 if sold after 2011 EQ and before 2015 article, else 0	0.0456		0.0414	0.0461		-0.00517
		(0.0962)		(0.0937)	(0.110)		(0.101)
article	1 if sold after 2015 article, else 0		0.117**	0.0918		0.130***	0.0540
		0.440.44	(0.0514)	(0.103)		(0.0498)	(0.109)
sb379	1 if in tsunami in. zone given by 1995 SB 379, else 0	0.119**		0.112*	0.113*		0.111*
xx12013	1 if in tsunami in. zone given by 2013 XXL, else 0	(0.0599)	0.0735 (0.0458)	(0.0576)	(0.0666)	0.0902* (0.0460)	(0.0612)
Observations R-squared		2,334 0.513	5,018 0.532	5,247 0.531	2,317 0.494	5,026 0.532	5,252 0.518

Table 6. Difference-in-differences selected results, matched data

		Nearest neighbor Mahalanobis			Nearest neighbor propensity score		
Variables	Labels	Model I	e	Model III	Model I	Model II	Model III
Event/Treatme	nt						
tohoku	1 if sold after 2011 EQ and before 2015 article, else 0	0.0456 (0.0962)		0.0414 (0.0937)	0.0461 (0.110)		-0.00517 (0.101)
article	1 if sold after 2015 article, else 0	(0.03.02)	0.117** (0.0514)	0.0918 (0.103)	(00220)	0.130*** (0.0498)	0.0540 (0.109)
sb379	1 if in tsunami in. zone given by 1995 SB 379, else 0	0.119**		0.112*	0.113*		0.111*
xxl2013	1 if in tsunami in. zone given by 2013 XXL, else 0	(0.0599)	0.0735 (0.0458)	(0.0576)	(0.0666)	0.0902* (0.0460)	(0.0612)
Observations R-squared		2,334 0.513	5,018 0.532	5,247 0.531	2,317 0.494	5,026 0.532	5,252 0.518

Table 6. Difference-in-differences selected results, matched data

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

 Conflicting and inconclusive evidence that the two events were capitalized into house prices

- Conflicting and inconclusive evidence that the two events were capitalized into house prices
- Full data: DID estimators statistically significant for 2 of 3 primary models
 - Found risk premium for properties inside original SB 379 zone following both information shocks

- Conflicting and inconclusive evidence that the two events were capitalized into house prices
- Full data: DID estimators statistically significant for 2 of 3 primary models
 - Found risk premium for properties inside original SB 379 zone following both information shocks
 - Did not find a risk premium following 2015 New Yorker article for properties inside the XXL 2013 zone

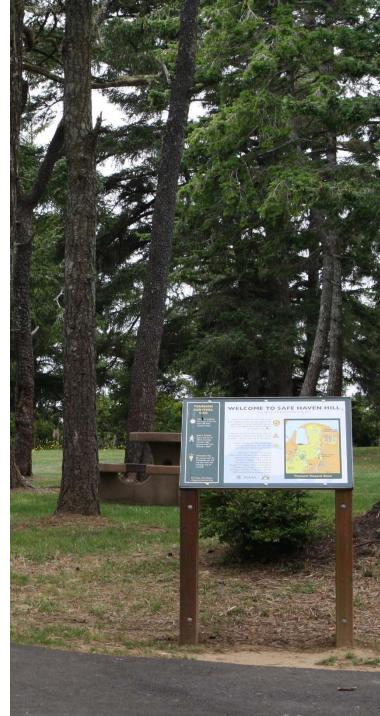
- Conflicting and inconclusive evidence that the two events were capitalized into house prices
- Full data: DID estimators statistically significant for 2 of 3 primary models
 - Found risk premium for properties inside original SB 379 zone following both information shocks
 - Did not find a risk premium following 2015 New Yorker article for properties inside the XXL 2013 zone
 - Treatment variables may capture value of unobserved coastal amenities

- Conflicting and inconclusive evidence that the two events were capitalized into house prices
- Full data: DID estimators statistically significant for 2 of 3 primary models
- Matched data: DID estimators not statistically significant for any of the models
 - Matching decreased the significance of the DID estimators but did not change the direction of the relationships

- Conflicting and inconclusive evidence that the two events were capitalized into house prices
- Full data: DID estimators statistically significant for 2 of 3 primary models
- Matched data: DID estimators not statistically significant for any of the models
 - Matching decreased the significance of the DID estimators but did not change the direction of the relationships
 - Treatment variables may be capturing the value of unobserved coastal amenities

 Both matching methods improved covariate balance though not below the [0.10] rule of thumb

- Both matching methods improved covariate balance though not below the [0.10] rule of thumb
- As covariate balance between treatment and control groups improved, significance of the DID estimators decreased



- Both matching methods improved covariate balance though not below the [0.10] rule of thumb
- As covariate balance between treatment and control groups improved, significance of the DID estimators decreased
- True capitalization effect of the two events may be closer to the null result of the matched data regressions



- Both matching methods improved covariate balance though not below the [0.10] rule of thumb
- As covariate balance between treatment and control groups improved, significance of the DID estimators decreased
- True capitalization effect of the two events may be closer to the null result of the matched data regressions
- Inconclusive but suggestive of a null result: that there is no evidence that either the Tohoku earthquake or New Yorker article were capitalized into house prices

 Measured effects of a "pure" or "distant" information shock in a region with no recent event

- Measured effects of a "pure" or "distant" information shock in a region with no recent event
 - Low frequency of Cascadia event may be driving lack of public salience about tsunami risk in Oregon

- Measured effects of a "pure" or "distant" information shock in a region with no recent event
 - Low frequency of Cascadia event may be driving lack of public salience about tsunami risk in Oregon
 - Even if the risk of a Cascadia event is salient, it may not be salient enough to translate into housing market behavior

- Measured effects of a "pure" or "distant" information shock in a region with no recent event
 - Low frequency of Cascadia event may be driving lack of public salience about tsunami risk in Oregon
 - Even if the risk of a Cascadia event is salient, it may not be salient enough to translate into housing market behavior
- Investigated tsunami risk disentangled from earthquake risk

- Verify that a null result reflects the true behavioral impact of the information shocks
- 1. Better matching procedure to increase covariate balance
 - Four-group propensity score weighting
 - Entropy balancing

This information could save your life – Please read it and share it with your family and friends.

Next steps...

- Verify that a null result reflects the true behavioral impact of the information shocks
- 1. Better matching procedure to increase covariate balance
 - Four-group propensity score weighting
 - Entropy balancing
- 2. Disentangle coastal amenities from tsunami risk: GIS viewshed analysis

Tillamook

This information could save your life – Please read it and share it with your family and friends.

©DOGAM

Conclusion

- Potential null result finding suggests
 - Risk of a Cascadia event is either not salient to coastal residents or not salient enough to translate into behavior
 - Market failure to internalize risk

© NorthCoastCitizen.com

Conclusion

- Potential null result finding suggests
 - Risk of a Cascadia event is either not salient to coastal residents or not salient enough to translate into behavior
 - Market failure to internalize risk
- Policy challenges
 - Existing efforts to communicate risk have not done enough
 - Some policies have even rolled back efforts, e.g., HB 3309

© NorthCoastCitizen.com

Conclusion

- Potential null result finding suggests
 - Risk of a Cascadia event is either not salient to coastal residents or not salient enough to translate into behavior
 - Market failure to internalize risk
- Policy challenges
 - Existing efforts to communicate risk have not done enough
 - Some policies have even rolled back efforts, e.g., HB 3309
- It may fall on policymakers to more effectively communicate the risk of a Cascadia event

© NorthCoastCitizen.com

THANK YOU

